

UNE MALADIE RARE MULTISYSTÉMIQUE

MALADIE DE SURCHARGE LYSOSOMALE 1,2,7

- Maladie génétique rare du métabolisme
- ▶ Incidence en France (ASMD* de type B) : 1/230 000 naissances
- Transmission autosomique récessive
- Mutation biallélique du gène SMPD1 (sphingomyéline phosphodiestérase 1)
 - → Déficit enzymatique en sphingomyélinase acide
 - Accumulation du substrat (sphingomyéline) dans les lysosomes des cellules, au sein des organes (rate, foie, poumons, moelle osseuse, etc.)
 - Risque de lésions tissulaires et d'altération fonctionnelle de ces organes

PRÉSENTATION CLINIQUE 1,3,4,7

ASMD Type A	ASMD Type A/B	ASMD Type B
Forme neuroviscérale infantile	Forme neuroviscérale chronique	Forme viscérale chronique
Atteinte viscérale sévère et neurologique rapidement progressive	Atteinte viscérale progressive et neurologique variable	Atteinte viscérale progressive et sans ou peu d'atteinte neurologique
Débute dans les premiers mois de vie	Débute dans l'enfance	Débute de l'enfance à l'âge adulte
Décès survenant vers les 3 ans	Décès dans l'enfance ou à l'âge de jeune adulte	Décès à l'âge adulte

PRINCIPAUX SYMPTÔMES QUI ORIENTENT LE DIAGNOSTIC 1,3,7,9,10

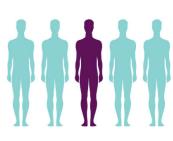
Suspicion d'ASMD devant un ou plusieurs signes décrits ci-dessous :

Splénomégalie > 90 % +/- Hépatomégalie > 70 %

hrombocytopénie > 50 %

Pneumopathie interstitielle diffuse (PID) > 80 %

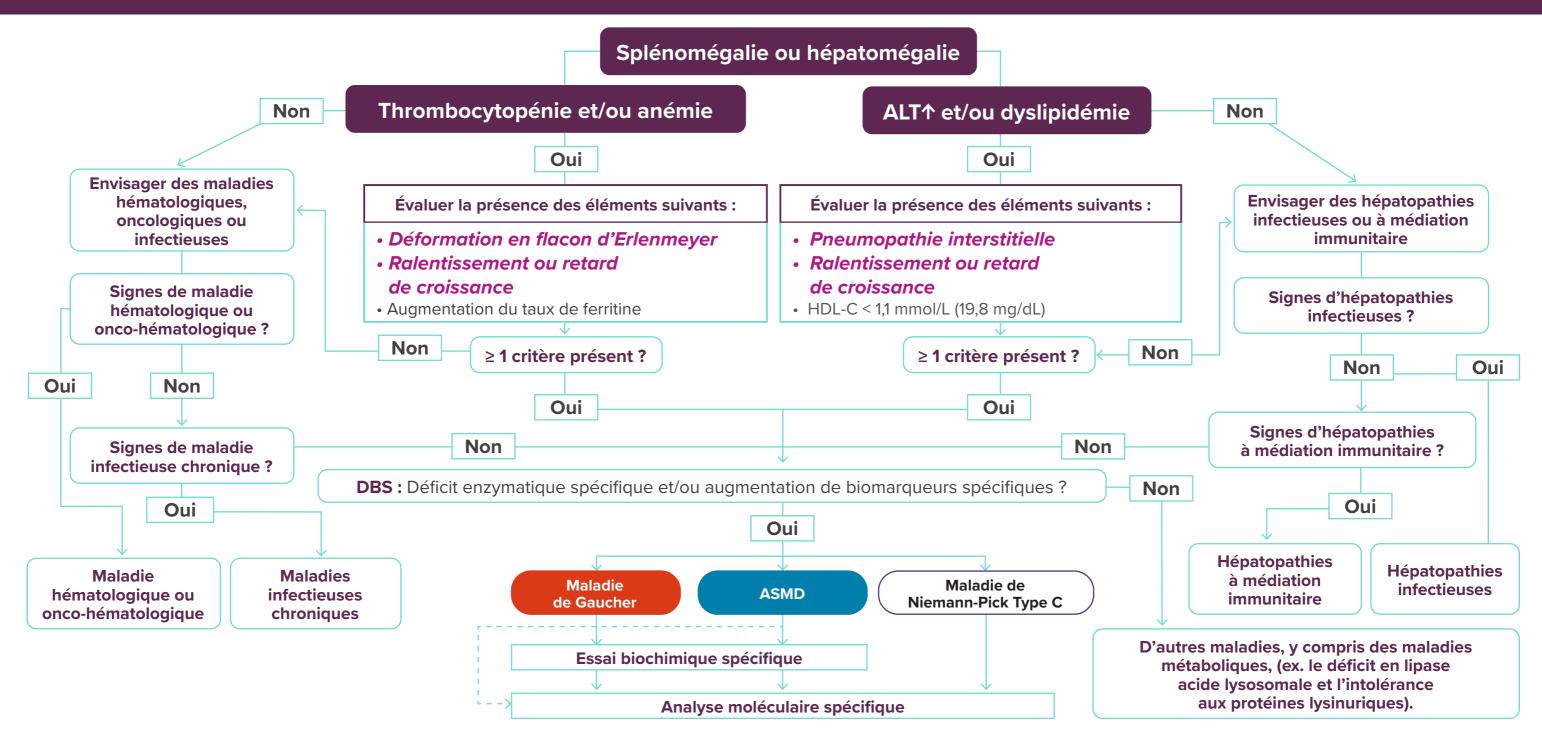
Retard de croissance > 90 %


Dyslipidém > 70 %

Un diagnostic précoce et une prise en charge adaptée des patients sont essentiels afin de réduire les risques associés de complications et de mortalité.

L'ASMD est une maladie sous-diagnostiquée pour laquelle une prise en charge spécifique est possible.

DIAGNOSTIC DE CERTITUDE : DOSAGE DE L'ACTIVITÉ ENZYMATIQUE 1,5,6,8


- Il est recommandé de dépister en parallèle l'ASMD et la maladie de Gaucher en raison de certaines manifestations cliniques communes (splénomégalie, hépatomégalie, thrombopénie...)
- ▶ Diagnostic de certitude ▶ mesure de l'activité enzymatique :
 - → De la sphingomyélinase acide (ASMD)
 - → De la glucocérébrosidase (maladie de Gaucher)
- Test réalisé dans des laboratoires spécialisés (sur tube EDTA ou sur papier buvard)
- En moyenne, 1 patient sur 4 suspecté d'être atteint de la maladie de Gaucher est finalement diagnostiqué ASMD.

^{*} Également appelée maladie de Niemann-Pick de type A, A/B et B. ASMD (Acid Sphingomyelinase Deficiency) : déficit en sphingomyélinase acide.

ALGORITHME DIAGNOSTIQUE CHEZ L'ENFANT 11

Algorithme diagnostique pour la MG et l'ASMD chez les enfants

ALT : Alanine Aminotransférase ; **ASMD** (Acid Sphingomyelinase Deficiency) : déficit en sphingomyélinase acide ; **DBS** (Dried Blood Spot) : tâches de sang séché ; **HDL-C** (High-Density Lipoprotein) : cholestérol lié aux lipoprotéines de haute densité, **MG :** Maladie de Gaucher.

Références bibliographiques :

- **1.** McGovern MM, et al. Orphanet Journal of Rare Diseases. 2017;12:41. **2.** Lidove O, et al. La Revue de Médecine Interne. 2017;38(5):291-299. **3.** Mauhin W, et al. Journal of Clinical Medicine. 2022;11(4):920. **4.** Cassiman D, et al. Molecular Genetics and metabolism. 2016;118:206-213. **5.** Protocole National de Diagnostic et de Soins de la maladie de Gaucher. HAS avril 2022. **6.** McGovern MM, et al. Genetics in Medicine. 2017;19(9):967-974. **7.** McGovern MM, et al. Orphanet J Rare Dis. 2021;16:212.
- **8.** Oliva P, et al. Mol Genet Metab. 2023;139(1):107563. **9.** McGovern MM, et al. J Pediatr. 2004;145:77—81.grafting. J Clin Lipidol. 2009;3:57—58. **10.** Ishii H, et al. J Inherit Metab Dis. 2006;29:232—234. **11.** Di Rocco et al. Orphanet J Rare Dis. 2023;18(1):197.

